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Abstract. The Boltzmann Machine is a stochastic recurrent neural net-
work with the ability to learn and extrapolate probability distributions.
However, it has a serious drawback in the exhaustive computational cost
involved at learning and simulation stages. Decimation [1,2] was orig-
inally introduced as a way to overcome this problem. Despite its sue-
cess, the method was too restrictive as it could only be used on sparsely
connected Boltzmann Machines with stringent constraints on the connee-
tions between the units. The High Order Decimation technique proposed
in this work is an extension of the previous method to any Boltzmann
Machine with no restrictions on connections nor topology, and is based
on the use of high order weights which incorporate additional degrees
of freedom. An example on binary patterns is also presented, showing
the improvement in efficiency against the performance of the original
Boltzmann Machine and a suitably tuned perceptron.

1 Introduction

The Boltzmann Machine (BM) [3] is a stochastic and recurrent neural network
based on the Hopfield model [4] with the ability to learn and extrapolate prob-
ability distributions. It is formally equivalent to a spin glass [5], thus providing
a clear definition of its dynamic and static properties. On the other hand, the
exhaustive computational cost implied by the model has prevented its use in
most applications of practical interest.

Standard decimation [1,2] was proposed as a method to reduce the total
amount of computational power needed at the learning stage, reducing this pro-
cess to the solution of a coupled set of nonlinear equations. However and as
conceived originally. this set could only be easily solved for a very special and
sparse kind of topologies known nowadays as decimatable [2] due to the lack
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of enough degrees of freedom when applied to regular BMs. The High Order
Decimation method explained in the following sections is able to deal with any
Boltzmann Machine regardless of its topology, as it adds high order connections
which incorporate the extra variables into the equations without a dramatic

increase in complexity.

2 The Boltzmann Machine

2.1 Boltzmann Machine Dynamics

The Boltzmann Machine is a Hopficld-like neural network with dynamics inher-
Simulated Annealing [6] optimization algorithm. It is governed by

ited from the
ates S; = [—1,+1]

a cost function that is written in terms of its unit st
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where u'f)'“ = u-ﬁ’ is a symmetric weight connecting units S; and S, while

u'f” is a bias term connected to unit S,. This functional is evaluated with the
Simulated Annealing algorithm until the Boltzmann Machine reaches thermal
st temperature of the annealing schedule. However, the

equilibrium at the lowes
goal of the process is not to optimize this function but rather to reach a stationary

probability distribution which in the end follows a Boltzmann law
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where the index a denotes the state of the network and could be written as a
string of -+1 and —1 indicating the state of every unit in the network. Finally, T
is the current temperature from the annealing schedule and Z is a normalization
term usually known as the partilion funclion.

2.2 Learning in Boltzmann Machines

The learning process in a BM is done by minimization of the Kullback-Leibler
distance [7) between the actual probability distribution and the one to be learnt.
For a BM with different input and output units this quantity reads

G=) Rapln I

f"!'r
S )
Paly
where P, is the Boltzmmann probability of finding an output state a when a
state 7 has been set in the input units and, consequently, depends on the weights
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and biases of Eq. (2). R, is the desired probability distribution to be learnt
for the same inputs and outputs, and is shown to the network in the form of an
input-output training set. Since G > 0 for any Py, # Rapy and has a global
minimum G = 0 when Papy = Rayy. gradient descent is usually employed on
Eq. (4) to find the update rule for both weights and biases [3] during le:

arning.
Thus
JG
Ml = - 5)
owy™
(m) .. . . .
where wi™ is a weight term connecting the m units denoted by the general

index o. Hence, for m = 2 and o = 205 urfj) is the two-unit weight connecting

S:, S;. When m = 1, 0 = i and becomes the bias term u'f”

associated to ;.
Calculating derivative from Eq. 5 will lead to expression

-2 ((11s) - (1)) 0
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where < ... >" and < ... > denote expectation values of its arguments on the
current probability distribution. while the star on the average indicates that the
output units are clamped to the desired output for a given input. These moments
have to be calculated for each vector of the training set, and are estimated in
the Monte Carlo simulations or annealing process. Finally, 7 is a convergence
parameter and T' the lowest equilibrium temperature from the cooling schedule.

2.3 The High Order Boltzmann Machine

The High Order Boltzmann Machine (HOBM) [8.9] is an extension to the orig-
inal model where connections through more than two units are allowed. In this
way, weights on a M-th order HOBM can connect up to M units, though not
all feasible combinations may necessarily be implemented. An example of a high
order weight connecting three units is shown in Fig. 1.

Si. Si S
g0 o,

Lt GG 0 Ju.i,

Fig. 1. Simplified notation for 3rd order connections

Of course the cost function or energy functional also changes as it has to
allow for the inclusion of the new weights. The most natural extension is 9]
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M
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where m denotes the order of the weight and o runs over the sets of m units actu-
ally connected in the network considered. Despite the change in E the dynamics
remain the same, and a Boltzmann probability distribution corresponding to
that energies is still reached at equilibrium.

Learning in a HOBM is carried out as in a standard BM, and so the Kullback-
Leibler distance is still used to find weight updating expressions, which conform
to Eq. (6) with the appropriate extension of the indexes displayed. Nevertheless,
the evaluation of the expectation values in the Monte Carlo simulation becomes
more and more involved with increasing m, as stated on Ref. [10]. The Ilig_h
Order Decimation method allows an analytical evaluation of these values, as it
is explained in the following sections.

3 Standard Decimation of Boltzmann Machines

Decimation is a standard technique in statistical mechanics (11] that is used in
this context as a procedure to reduce the number of weights and units on a
Boltzmann Machine with stringer connectivity constraints [1,2). Given a stan-
dard 2nd order BM with N units and tree topology, it is possible to build a
smaller network with n < N units that still produces the same expectation val-
ues of Eq. (6). This is accomplished by decimating any given S unit connected
10 no more than three other units S,,S; and Sk, regardless of whether they are
clamped or not.

Decimation is better carried out when a new, temperature normalized wei
are employed

ghts

) wy™ (8)
J 7y S p—
% T
In its practical form, decimation of a unit S connected to other neurons by
two-unit weights is accomplished when the corresponding terms in the partition
function fulfill the relation

+1
Y ST o VCeLl: S )
S=-1

This leads to the master equation

Ltk YN = (2)

In cosh (Z S:J; ) =JO 4 ZS.S)J,] ' (10)
1 1<1

where J(O) = lll(\/6/2) is a normalization constant that is required to solve the

system of equations. Notice that the goal of this procedure is to remove unit S

from the network by changing the weights among the rest of the neurons in the
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: 2
system. In this way the J ( ) weights appearing on the lhs of the equations above
stand for their values prmr to the decimation, while the l(

weights on the rhs
correspond to the new set of we

ights once the decimation ha.s been carried out.

3.1 Decimation Equations

A .sunplv example of high order decimation is the star-triangle transformation of

Fig. 2. The new weights obtained from the decimation of the unit in the center
of (h(' star become
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The serial association of Fig. 2b is a particular case of the previous result

2) .
when J,f, ) is set to zero
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Fig. 2. Scrial (a), parallel (b) and star-triangle association (c)

Finally, the parallel association of Fig. 2a is trivially seen to be the sum of
the weights and is a simplification rule rather than a decimation one that is
included for consistency reasons.
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4 High Order Decimation

Decimation. as stated in the previous section, can not be used to simplify a unit,
than three other units. Hence, a structure like the one showed

connected to more ; ;
ith the techniques explained so far.

in Fig. 3 can not be decimated W

jm

Fig. 3. Simplest non decimatable structure

Decimation fails to simplify these structures because the equations obtained
are not compatible with one another. The High Order Decimation method adds
enough high order terms for the system to become solvable. In order to explain
why this happens. it is useful to take a look at the equations that describe the
easiest non-solvable example, which consists of a unit S connected to three other

units and a bias term as shown in Fig. 3

In cosh (J“) + .1'(2)5. + JJmSJ + JLZ)Sk) =
2 2 2 2

JO 4 JO5,S, + JPS S+ IS S (13)
The complete set of equations born from this expression can not be solved
for arbitrary values of J, J,m, J]m and J,(f). The resulting system of equations
can only be solved if there are as many equations as unknown variables, provided
that the equations are linearly separable. Hence, four variables are needed. If bias
terms associated to units S;, S; and Sy are included, there is only one unknown
left. A third order weight can then be used to account for this variable. This

term will link these three units in the set of equations, and appears as J,(J"z

In cosh (J“) + ZS,J:Z)) (14)
e (1) 2 o o g
=JO 4+ Y 50+ 550+ Y 85,595 -

<t k<y<i

"This set of equations is characterized by a Hadamard matrix [12). Hadamard
matrices have orthogonal rows and columns so the system has a solution that is
unique. The same thing happens when an N+ 1-star groups of units is considered,
where a central biased S unit is connected to units Sy to Sy ;. In this case.
weights up to N-th order have to be added. As a result, a fully connected N-th
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order neural network is obtained. The total number of equations required to

perform decimation is 2V ; as there are = 1 normalization constants J(©),

J 2 AY 7
( ; ) biases J(1), ( 5 ) second order weights J(2), (1:) third order terms

s 4 N .
J® and so on, until the last }\,) =1 N-th order J™) weight. This makes a

total of 2V variables. The process is schematically shown in Fig. 4, where the
originally second order neural network on Fig. 4a is decimated to produce the
result of Fig. 4b. It can be proved tha
Hadamard matrix, meaning that there
given structure.

t this system has always an associated
will always be a unique solution for a

s J(l) J:)Z) J(I'.') J‘N:Zl S J(l) J!Z) Jl‘) J(N)
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Fig. 4. Original (a) and dccimated (b) structure. New weights J™) connect as much
as m different. S, units

When the decimation is to be carried out, all weights connected to the central
unit S have to be included, and the corresponding equations have the following
form

Incosh | S + 37502 + 35508 +..+ 30 ] s, =
1 <t 4 pca.Sgp
=JO+ > S+ 550D 4 > 585 IS + ... . (15)

1< k<y<a

Once the system is solved, a new Boltzmann Machine with one less unit is
left, at the expense of it being highly connected due to the many different high
order weights produced by the decimation reduction. In order to compute the
needed m-th order correlations appearing in the weight update learning rule, the
process is iterated until all but the required units are decimated, in such a way
that the expectation values entering in the updates can be computed analytically
as noted in Ref. [1,2]. The whole process has to be repeated for every weight
that has to be updated.
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5 Results and Discussion

thod has been tested against a perceptron and a

traditional BM in a letter recognition dataset context. where the network has to
a noisy source. A system of 24 letters written with a

ach letter is represented by a 50x50 pixels
binary image. While these neat characters are the ones to be learned, a set of
100 different images for each Jetter is generated by adding random noise which
is implemented via bit negation. The amount of noise present is characterized
ter y. which is proportional to the percentage of negated bits. Thus
ed when 7 = 10. Once the learning using the
a new set of noisy characters is generated

The high order decimation me

recognize characters from
Times New Roman font is used, and e

by a parame
for example. 10% of bits are revers
atterns has been carried out,
procedure to test the network.

is sped up whe
added to the original gradient descent

previous p
using the same

In practical terms, execution time
xtra parameter @ is

n a momentum term char-

acterized by an e
expression [13]
D = w® — (1 _a)%+auy(k—l) ; (16)
O€ /0w denoting the partial derivative of the error. Since each neural network
uses a different measure for the error, this expression may be thought as a
generalization of the learning algorithm which has been adapted for the three

networks used in this work.

5.1 Monte Carlo Implementation
Table 1 shows the amount of time and epochs (equal to the number of times
weights are updated in a complete run of the learning algorithm) required by a
Boltzmann Machine trained with the High Order Decimation method compared
with results for the same network trained with the standard Monte Carlo al-
gorithm using the above stated patterns for 7 = 20. All calculations have been
performed on a DELL workstation mounting a Pentium Xeon EMT64 with 2Mb
of cache processor working at 3.0 GHz and equipped with 1.0 Gb DDR2 ECC
RAM memory. As it can be seen, not only the High Order decimation performs
faster but also requires less epochs to reach the desired result. This is due to the
fact that every Monte Carlo simulation has an associated statistical error, and
low a certain limit (imposed by the accuracy to be achieved) can
be very expensive in computational terms. The network used in this calculation
has 2500 input units (corresponding to the 50x50 pixel images used as input),
1 hidden and 5 output units. The training parameters were 717 = 0.2, a = 0.1,
maximum absolute error | 9€ /0w |= 0.05 and maximum absolute initial random
value for the weights |ug |= 1.0.
The relation time/epoch describes how long does it take to run a complete

simulation. As it can be seen from the table, Decimation performs
there

bringing that be

epoch in the
considerably better in both aspects. A Decimation epoch is faster because
is 10 need to run a Simulated Annealing but only to solve a system of equations.
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Table 1. Decimation method against Monte Carlo implementation

Algorithm Mean cpochs Mecan time/cpoch (seconds)
Monte Carlo 45 586.68
High Order Decimation 11 4.39

On the other hand, it needs less epochs to end because it does not suffer from
statistical errors as does a Monte Carlo simulation.

5.2 Perceptron

Finally, a comparison between the performance of the BM trained with the
High Order Decimation method and a dual layer perceptron is presented. The
comparison is made on the basis that both networks can provide a full solution
to the problem at hand if enough learning instances are allowed. In fact both
networks have been trained many times and its efficiency tested at the end of
cach learning process. finding that both systems can be 100% efficient in many
cases. Taking into account this fact , the mean efficiency over a batch of instances
of the same problem has been measured. and this parameter used t decide which
network performs better in a statistical sense.

The BM used in the comparison is fully connected, with four output units
and a variable number of hidden neurons ranging from zero to two. Learning
parameters are once again 1) = 0.2, @ = 0.1, maximum absolute error |0€/ow|=
0.05 and maximum absolute initial random value for weights |wg |= 1.0. On the
other hand, the topology of the perceptron employed has been optimized to get
best results. The experiment has been repeated using a number of hidden units
spanning the range from 5 to 2500, using both lineal and hyperbolic tangent
transfer functions, and a momentum a between 0.0 and 0.2 with an adaptive n
learning rate. Results on the performance are presented in Table 2.

Table 2. Decimation method against perceptron

w Mean eff. for BM Mean eff. for perceptron

0.10 97.25 60.38
0.15  96.87 68.77
0.20 94.58 83.49
0.25 94.05 88.55
0.30  86.90 84.87

It can be seen from the table that the Boltzmann Machine performs slightly
better than the perceptron. This can be understood when the problem is carefully
analyzed, as it has an original discrete nature. Since the Boltzmann Machine is
a binary neural network and the perceptron is a continuous one. the BM is
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better suited to solve the problem. However, the perceptron is a widely useq
multi purpose network, and it can perform very well on problems where other
continuous models fail. In any case and although the Boltzmann Machine does a
better job, the perceptron still provides solutions that are more than satisfactory.
Still when High Order Decimation is employed, the Bollzmnnr.l Machine not only
outperforms the perceptron but also gets the solution in a similar period of time.

6 Summary and Conclusions

In this work a generalization of the st andard decimation method in the learning
of Boltzmann Machines is presented and discussed, showing that the inclusion of
high order weights can simplify the learning process. Comparisons with the stan-
dard BM and an optimized perceptron show that the procedure is not only easy
also that its performance in terms of efficiency and computa-
r. In this way, high Order Decimation may be the key to bring
a level where they become effective in the resolution of

to implement but
tional cost is bette
Boltzinann Machines to
practical problems.
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