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Abstract. The Boltzmann Machine is a stochastic recurrent neural net-
work with the ability to learn and extrapolate probability distributions.
However, it has a serious drawback in the exhaustive computational cost
involved at learning and simulation stages. Decimation [1,2} was orig-
inally introduced as a way to overcome this problem. Despite its suc-
cess, the method was too restrictive as it could only be used on sparsely
connected Boltzmann Machines with stringent constraints on the connec-
tions between the units. The High Order Decimation technique proposed
in this work is an extension of the previous method to any Boltzmann
Machine with no restrictions on connections nor topology, and is based
on the use of high order weights which incorporate additional degrees
of freedom. An example on binary patterns is also presented, showing
the improvement in efficiency against the performance of the original
Boltzmann Machine and a suitably tuned perceptron.

1 Introduction

The Boltzmann Machine (BM) [3] is a stochastic and recurrent neural network
based on the Hopfield model [4] with the ability to learn and extrapolate prob-
ability distributions. It is formally equivalent to a spin glass [5], thus providing
a clear definition of its dynamic and static properties. On the other hand, the
exhaustive computational cost implied by the model has prevented its use in
most applications of practical interest.

Standard decimation [1,2] was proposed as a method to reduce the total
amount of computational power needed at the learning stage, reducing this pro-
cess to the solution of a coupled set of nonlinear equations. However and as
conceived originally, this set could only be easily solved for a very special and
sparse kind of topologies known nowadays as decimatable [2] due to the lack
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of enough degrees of freedom when applied to re
gular BMs. The High Order

Decimation method explained in the following sections is ab
le to deal with any

Boltzmann Machine regardless of its topology, as it adds high order connections

which incorporate the extra variables in
to the equations without a dramatic

increase in complexity.

2 The Boltzmann Machine

2.1 Boltzmann Machine Dynamics

The Boltzmann Machine is a Hopfield-like neural network with dynamics inher-

ited from the Simulated Annealing [6] optimization algorithm. It is gover
ned by

a cost function that is written in terms of its unit s
tates S; = [-1,+1]

Ε=-Σ55, -  Σω5,
1.J i

(1)

where w = wn is a(2) = (2) is a symmetric weight connecting units S, and S3, whil
e

w is a bias term connected to unit S,. This functional is evaluated with the

Simulated Annealing algorithm until the Boltzm
ann Machine reaches thermal

equilibrium at the lowest temperature of the annealing schedule. Howe
ver, the

goal of the process is not to optimize this function but rather to reach a stationary

probability distribution which in the end follows a B
oltzmann law

e-E/T
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where the index a denotes the state of the network and could be written as a

string of +1 and –1 indicating the state of every unit in the network. Finally, T

is the current temperature from the annealing schedule and Z is a normalization

term usually known as the partition function.

2.2 Learning in Boltzmann Machines

The learning process in a BM is done by minimization of the Kullback-Leibler

distance [7} between the actual probability distribution and the one to be learnt.

For a BM with different input and output units this quantity reads

Ray
G= Ray In

Pay
a

(4)

where Pa is the Boltzmann probability of finding an output state a when a
state y has been set in the input units and, consequently, depends on the weights
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Table 1. Decimation method against Monte Carlo implementation

Algorithm Mean epochs Mean time/epoch (seconds)
Monte Carlo

High Order Decimation

45

11

586.68

4.39

On the other hand, it needs less epochs to end because it does not suffer fromstatistical errors as does a Monte Carlo simulation.

5.2 Perceptron

Finally, a comparison between the performance of the BM trained with theHigh Order Decimation method and a dual layer perceptron is presented. Thecomparison is made on the basis that both networks can provide a full solution
to the problem at hand if enough learning instances are allowed. In fact bothnetworks have been trained many times and its efficiency tested at the end of
each learning process, finding that both systems can be 100% efficient in many
cases. Taking into account this fact, the mean efficiency over a batch of instances
of the same problem has been measured, and this parameter used t decide which
network performs better in a statistical sense.

The BM used in the comparison is fully connected, with four output units
and a variable number of hidden neurons ranging from zero to two. Learning
parameters are once again n = 0.2, a = 0.1, maximum absolute error|0E/dw|=
0.05 and maximum absolute initial random value for weights |wo|= 1.0. On the
other hand, the topology of the perceptron employed has been optimized to get
best results. The experiment has been repeated using a number of hidden units
spanning the range from 5 to 2500, using both lineal and hyperbolic tangent
transfer functions, and a momentum a between 0.0 and 0.2 with an adaptive n
learning rate. Results on the performance are presented in Table 2.

Table 2. Decimation method against perceptron

7 Mean eff. for BM Mean eff. for perceptron

0.10 97.25 60.38

0.15 96.87 68.77

0.20 94.58 83.49

0.25 94.05 88.55

0.30 86.90 84.87

It can be seen from the table that the Boltzmann Machine performs slightly
better than the perceptron. This can be understood when the problem is carefully
analyzed, as it has an original discrete nature. Since the Boltzmann Machine is

a binary neural network and the perceptron is a continuous one, the BM is
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better suited to solve the problem. However
, the perceptron is a widely used

multi purpose network, and it can perform very well on problems where other

continuous models fail. In any case and although the Boltzmann Machine do
es a

better job, the perceptron still provides solutions that are more than satisfactory.

Still when High Order Decimation is employe
d, the Boltzmann Machine not only

out performs the perceptron but also gets the solution in a similar period of time.

6 Summary and Conclusions

In this work a generalization of the standard decimation method in the learning

of Boltzmann Machines is presented and discussed, showing that the inclusion of

high order weights can simplify the learning process. Comparisons with the stan-

dard BM and an optimized perceptron show that the procedure is not only easy

to implement but also that its performance in terms of efficiency and computa-

tional cost is better. In this way, high Order Decimation may be the key to bring

Boltzınann Machines to a level where they become effective in the resolution of

practical problems.
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